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// The bytes that represent the private key

byte[] priv_key_bytes = { 0xe3, 0x00, ... };

// Turn the bytes into a PrivateKey

PKCS8EncodedKeySpec key =

new PKCS8EncodedKeySpec(priv_key_bytes);

KeyFactory kf = KeyFactory.getInstance("RSA");

PrivateKey priv_key = kf.generatePrivate(key);

Listing 1. Cryptography Vulnerability: hard-coded private
key

1. Problem and Motivation
Many systems use public-key cryptography to encrypt users’
private information and to prevent an attacker from getting
access to it. However, there is little assurance that these
systems use cryptography correctly, even if they rely on
correctly implemented third-party cryptographic libraries.

Indeed, a recent report [15] found that over 40% of An-
droid applications (out of close to 10,000 analyzed appli-
cations) use hard-coded cryptographic keys, which violates
good encryption practice. The same report claimed that cryp-
tographic issues cause 44% of security breaches on the An-
droid platform, making them the leading cause of security
errors on the Android Platform.

I develop a semantic security condition that captures safe
uses of public-key cryptography and present a type system
to enforce it. This work extends the type system for the Java
programming language, and implements Cryptflow, a tool
to track information flow through Java programs and ensure
correct use of public-key cryptography.

Motivating Examples I present two examples which model
the most frequent misuses of cryptography on the Android
Platform. Programs for the Android Platform are written in
Java and make use of Java’s cryptographic libraries.

In the code snippet of Listing 1, a private key is created
from a sequence of public bytes in the file. The code snippet
exhibits a security vulnerability because the contents of the
private key are visible to anyone with access to the source

KeyPair pair = ...;

PrivateKey priv_key = pair.getPrivate();

// Output the bytes of the private key to System.out

byte[] priv_key_bytes = priv_key.getEncodedBytes();

System.out.println(Arrays.toString(priv_key_bytes));

Listing 2. Cryptography Vulnerability #2: output private
key to public channel

code of the application. The proper thing to do would be to
store private keys in a secure key store.

In Listing 2, the bytes of a private key are converted to a
string and output to the console via System.out.println. This
code exhibits a security vulnerability because the contents
of the private key are printed out and have become public
information. This example represents a common Android
platform vulnerability where a private key is output on a
public channel, such as the file system.

We can prevent these insecurities by tracking and con-
trolling how information flows through the program. In
the first example, we can prevent a private key from be-
ing constructed from a low security array of bytes. In the
second example, we can prevent any information about
the private key from flowing to a public channel, such as
System.out.println. To prevent the vulnerabilities shown in
the examples above, stronger guarantees about the security
of encrypted information are necessary.

2. Background and Related Work
I further the work done on cryptographically-masked flows
by Askarov et al. [3] that presents a type system for a lan-
guage with symmetric encryption. This work extends their
notion of possibilistic noninterference to support public-key
encryption and offers an implementation that enforces my
type system.

Noninterference [8] is a strong semantic security guaran-
tee that, in essence, requires that secret inputs do not influ-
ence public outputs. In a language-based setting, noninter-
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ference can be enforced by tracking and controlling the flow
of information in a program, using program analyses such as
type systems. Sabelfeld and Myers [13] survey approaches
for language-based information-flow control.

Much recent work [5–7, 9–11, 14] focuses on the compu-
tational probabilistic guarantees of programs that use cryp-
tography. This work aims at showing a simpler possibilistic
guarantee, which could be composed with possibilistic poli-
cies for declassification and key release [2] and security in
the presence of dynamic policies [1].

The work most closely related to this one is the one
by Küsters et al. [9] that analyzes implementation-level us-
age of cryptographic primitives in Java-like programs. How-
ever, this work is novel because the the implementation of
Cryptflow is a modular extension to the ObjAnal frame-
work [4] which covers the full Java language and is easily
extensible.

3. Approach and Uniqueness
To establish guarantees on the secure usage of public key
cryptography, this work tracks the information flow through
programs which employ cryptographic primitives. This work
extends the notion of noninterference to allow safe encryp-
tion, decryption and key generation [3] for public-key cryp-
tographic protocols. Armed with this semantic security con-
dition, I present a type system for a small imperative lan-
guage with encryption, decryption, and key generation. I
then prove that this type system guarantees the extended no-
tion of noninterference, which implies that programs written
in this language are provably secure.

Finally, this work presents Cryptflow, an information
flow analysis of Java programs which employ cryptographic
protocols. Cryptflow is implemented using the Accrue Ob-
jAnal framework [4] for interprocedural analysis of Java
programs. ObjAnal is itself built as a compiler extension to
Polyglot [12], an extensible compiler framework for Java.

This information-flow analysis takes care of tracking
information flow through Java language features, includ-
ing objects, methods, fields, and exceptions. The analysis
does not handle reflection or custom class loaders. Crypt-
flow required approximately 500 lines of Java code to adapt
the information-flow analysis to handle the restrictions on
public-key cryptography.

The contribution of this work is a novel semantic security
condition for public key cryptography and a type system
that provably enforces this condition. The ideas of this type
system are instantiated in the Cryptflow tool.

4. Results and Contribution
I have run Cryptflow on several simple Java programs, in-
cluding programs that use cryptography safely and programs
with vulnerabilities such as those of Listings 1 and 2, which
model common vulnerabilities on the Android Platform.
Cryptflow correctly rejects the unsafe usages of cryptog-

raphy, and admits simple programs that use cryptography
correctly, such as a program that generates a keypair and
correctly performs RSA encryption and decryption.

The prototype implementation currently relies on the
programmer identifying the uses of encryption and de-
cryption. In the Java Cryptography framework, the method
javax.crypto.Cipher.doFinal is used to perform both encryp-
tion and decryption, based on a flag passed earlier to a differ-
ent method of the object. I am currently working to extend
our analysis to recognize encryption and decryption using
the Java Cryptography framework, without programmer an-
notations.

These results are significant because they mark an impor-
tant step towards providing guarantees about the security of
that public key encryption. Cryptflow has the potential to be
a valuable tool for verifying the correct usage of encryption
on the Android platform.

Note
I developed the semantic security condition and proved that
it is enforced by the type system under the guidance of
Aslan Askarov and Stephen Chong. The implementation was
jointly done. The research described in this work is under
submission to PLAS 2013.
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