
Fighting Cryptographic
Misuse with Types
HANNAH (ANNA) GOMMERSTADT

CARNEGIE MELLON UNIVERSITY

Should I
write my
own crypto
library?

NO

BUT I WANT TO

Are you a
professional
cryptographer?

NO
YES

GOOD CHOICE GOOD LUCK

Reality

It turns out we are really bad at using
cryptographic libraries too.

Case Study: Android Platform
The Android Platform occupies a major share of the
American smart phone market

The majority of applications on Google Play make use
of cryptographic functions

Android applications are trivial to decompile back to
Java and therefore we can run many existing analyses
on them

Terrible Fact

Out of 10,000 analyzed Android
applications, 40% were found to have a
hard coded cryptographic key (2011).

Terrible Chart

44%

28%

10%

8%
4%

Vulnerability Distribution on the
Android (2011)

Cryptographic
Issues
CRLF Injection

Information
Leakage
Time and State

It Does Not Get Better

10,327 out of 11,748 applications (88%)
in the Google Play marketplace, that use

cryptographic APIs make at least one
mistake (2013).

What Kinds of Bugs?
Hardcoded cryptographic keys

Outputs of secure keys to public channels

Non-random initial vectors

Weakly chosen keys

Reused initial vectors

Motivation

It is necessary to guarantee and enforce
the security of public-key cryptographic

protocols, especially on the Android
platform

Assumptions
We assume that mainstream 3rd party libraries provide
correct implementations of common algorithms (RSA, etc)

We are concerned with misuses of correctly implemented
cryptographic protocols

This work focuses on the security of public-key
cryptographic protocols

Theoretical Approach
Using ideas from information flow we define semantic
security condition for public key cryptography (possibilistic
noninterference)

We develop an enforcement mechanism (type system) and
show that it provably enforces the security condition.

Information Flow

var low = high explicit flow

if (high == 7) implicit flow
var low = 5

else

var low = -7

Noninterference
High-security information cannot observably (to an attacker)
influence low-security information

Standard noninterference does not work for public-key
cryptography because the low-security ciphertext is
influenced by the high-security plaintext

Possibilistic Noninterference
A modified notion of traditional noninterference

We want the ciphertext to possibly be any value so that a
change in the high-security plaintext does not affect the
low-security ciphertext

Based on work by Askarov et al (2008) for private-key
cryptography

The Language
Using a simple imperative language with encryption,
decryption and key generation commands

Most of the semantics and typing are standard, except for
encryption, decryption, input/output channels and key
generation

Encryption Semantics
Encryption is nondeterministic

Encrypting a plaintext with a specific key can
generate a set of possible ciphertexts.

This nondeterminism is essential for our notion of
possibilistic noninterference

Decryption Semantics
Decryption is deterministic

A ciphertext and a key have one possible decryption

Examples: El Gamal, nondeterministic variant of RSA

Channels
We provide input and output channels with a lot of
structure

Can output public and private keys on dedicated
channels without risking the output of private keys
on public channels

Key Generation
Key generation only occurs in a low context, so that
the public key cannot be influenced by a high context

Secure key generation will be expanded to also
include secure key storage

Proofs
Proved that type system is sound

Proved that a well typed program adheres to
possibilistic noninterference

Next Steps
Encoding a secure key store into the type system

Using nonces to formalize initialization vectors

Encodings of integrity policies

Cryptflow Framework
Can analyze snippets of code that misuse cryptography and
identify simple vulnerabilities

Built on top of the Polyglot and Objanal frameworks

Performs a flow sensitive information flow analysis of Java
code

Code Example

More Details
Full thesis (with proofs!) on my website:
http://anyag.net/papers/thesis.pdf

http://anyag.net/papers/thesis.pdf

