
Monitors and Blame
Assignment for Higher
Order Session Types

LIMIN JIA, HANNAH GOMMERSTADT ,
FRANK PFENNING

1

Distributed System

2

Distributed System

3

Contributions

• Use session types to dynamically monitor
communication between processes to
detect undesirable behavior

• Correctly blame the party that violated
the prescribed communication protocol

4

Static Checking?

• Need to run checker on each node on
code written in different languages

• Unrealistic to assume that will have access
to whole computing base

• Use session types as invariants to check
dynamically

5

Process Model

• Processes communicate asynchronously
over channels by using message queues

• A process provides a service along a single
channel, ex. proc(c, P)

 6

proc(c, P)

Typing

𝒄𝟏: 𝑨𝟏 … 𝒄𝒏: 𝑨𝒏 ⊢ 𝑷 ∷ (𝒄: 𝑨)

where A is a session type

7

A process always provides along a single channel, but
it may be a client of multiple channels.

Session Types

Type Meaning

𝒄: 𝝉 ∧ 𝑨 Send 𝒗: 𝝉 along 𝒄, continue as 𝑨

𝒄: 𝝉 → 𝑨 Receive 𝒗: 𝝉 along 𝒄, continue as 𝑨

𝒄: 𝟏 Close channel 𝒄 and terminate

𝒄: 𝑨 ⊗ 𝑩 Send channel 𝒅: 𝑨 along 𝒄, continue as 𝑩

𝒄: 𝑨 ⊸ 𝑩 Receive channel 𝒅: 𝑨 along 𝒄, continue 𝑩

𝒄: ⊕ 𝒍𝒊: 𝑨𝒊 Send label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊

𝒄: & 𝒍𝒊: 𝑨𝒊 Receive label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊

8

Session Types

Type Meaning

𝒄: 𝝉 ∧ 𝑨 Send 𝒗: 𝝉 along 𝒄, continue as 𝑨

𝒄: 𝝉 → 𝑨 Receive 𝒗: 𝝉 along 𝒄, continue as 𝑨

𝒄: 𝟏 Close channel 𝒄 and terminate

𝒄: 𝑨 ⊗ 𝑩 Send channel 𝒅: 𝑨 along 𝒄, continue as 𝑩

𝒄: 𝑨 ⊸ 𝑩 Receive channel 𝒅: 𝑨 along 𝒄, continue 𝑩

𝒄: ⊕ 𝒍𝒊: 𝑨𝒊 Send label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊

𝒄: & 𝒍𝒊: 𝑨𝒊 Receive label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊

9

Session Types

Type Meaning

𝒄: 𝝉 ∧ 𝑨 Send 𝒗: 𝝉 along 𝒄, continue as 𝑨

𝒄: 𝝉 → 𝑨 Receive 𝒗: 𝝉 along 𝒄, continue as 𝑨

𝒄: 𝟏 Close channel 𝒄 and terminate

𝒄: 𝑨 ⊗ 𝑩 Send channel 𝒅: 𝑨 along 𝒄, continue as 𝑩

𝒄: 𝑨 ⊸ 𝑩 Receive channel 𝒅: 𝑨 along 𝒄, continue 𝑩

𝒄: ⊕ 𝒍𝒊: 𝑨𝒊 Send label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊

𝒄: & 𝒍𝒊: 𝑨𝒊 Receive label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊

10

Example

11

System Assumptions

• All processes are untrusted

• All monitors are trusted

• All message queues are trusted

12

Attacker Model

• Takes control of a process by replacing it
by another

𝒑𝒓𝒐𝒄 𝒄, 𝑷

13

Attacker Model

• Takes control of a process by replacing it
by another

𝒑𝒓𝒐𝒄 𝒄, 𝑷 → 𝒑𝒓𝒐𝒄(𝒄, 𝑸)

14

Attacker Model

• Takes control of a process by replacing it
by another

havoc: 𝒑𝒓𝒐𝒄 𝒄, 𝑷 → 𝒑𝒓𝒐𝒄(𝒄, 𝑸)

15

Attacker Model

• Takes control of a process by replacing it
by another

havoc: 𝒑𝒓𝒐𝒄 𝒄, 𝑷 → 𝒑𝒓𝒐𝒄(𝒄, 𝑸)

• Q cannot invent new channels, must have
knowledge of existing ones

16

Monitor Capabilities

• Placed at the ends of each queue, check
message as it gets enqueued

• Can ONLY observe communicated values

• No access to process internals

• Raise alarms, which stop computation

17

M M

Simple Monitor

18

proc(c, Q) proc(a, P) M M
𝒄: 𝒊𝒏𝒕 ∧ 𝑨

5

Simple Monitor

5

19

proc(c, Q) proc(a, P) M M

proc(c, Q) proc(a, P) M M

𝒄: 𝒊𝒏𝒕 ∧ 𝑨

𝒄: 𝒊𝒏𝒕 ∧ 𝑨

5: int

Simple Monitor

5

20

proc(c, Q) proc(a, P) M M

proc(c, Q) proc(a, P) M M

𝒄: 𝒊𝒏𝒕 ∧ 𝑨

𝒄: 𝒊𝒏𝒕 ∧ 𝑨

5: int

proc(c, Q) proc(a, P) M M 5
𝒄: 𝑨

Higher-Order Monitor

21

proc(c, Q) proc(a, P) M M
𝒄: 𝑨 ⊗ 𝑩

d

Higher-Order Monitor

22

proc(c, Q) proc(a, P) M M

proc(c, Q) proc(a, P) M M d

𝒄: 𝑨 ⊗ 𝑩

𝒄: 𝑩

M M proc(d, R)
𝒅: 𝑨

Monitoring Challenges
• Havoc transitions can cause channels to be

duplicated, dropped, etc

• This can create non-linear dependencies

.

23

Blame Example

24

Cam Monitor Record:
- No spawns yet!

Blame Example

25

Cam

picHandle

Monitor Record:

- Cam spawned
picHandle

Blame Example

26

Cam

picHandle

Monitor Record:

- Cam spawned

picHandle

- picHandle
spawned
photoPerm

photoPerm

Blame Example

27

Cam

picHandle

Monitor Record:

- Cam spawned

picHandle

- picHandle
spawned
photoPerm

photoPerm

Blame Example

28

Cam

picHandle

Monitor Record:

- Cam spawned

picHandle

- picHandle
spawned
photoPerm

photoPerm

Blame Example

29

Cam

picHandle

Monitor Record:

- Cam spawned

picHandle

- picHandle
spawned
photoPerm

photoPerm

Blame Example

30

Cam

picHandle

Monitor Record:

- Cam spawned

picHandle

- picHandle
spawned
photoPerm

photoPerm

Big Spawn Tree

31

Havoced Spawn Tree

32

Havoced Spawn Tree

33

Blame Path

34

Theoretical Results

• Correctness of blame

• Well typed configurations do not raise
alarms

• Monitor transparency

• Minimality*

35

Correctness of Blame

• In case of an alarm, one of the indicated
set of possible culprits must have been
compromised.

36

Well Typed Configurations

• A havoc transition is necessary for the
monitor to halt execution and assign blame

37

Monitor Transparency

• Dynamic monitoring does not change
system behavior for well-typed processes

38

Minimality*

• The set of processes is as minimal as
possible with respect to the observational
model of the monitor

• This is a conjecture

39

Technical Challenges

• Execution may continue for havoced
processes for many steps before an
observable type violation occurs

• Rogue process configurations may violate
invariants such as linearity

40

Summary

• System of monitoring and blame
assignment for session-type asynchronous
communication model

• Adversary model allows process to
transition to ill typed code in a havoc step

41

Tech Report: https://www.cylab.cmu.edu/research/techreports/2015/tr_cylab15004.html

Related Work

• Blame Calculi: Findler et al. (2002), Wadler
et al. (2009), Dimoulas et al. (2011, 2012),
Ahmed et al. (2011), Fennel et al. (2012),
Keil et al. (2015), Siek et al. (2015)

• Multiparty Session Types: Bocchi et al.
(2013), Chen at al. (2011), Thiemann
(2014)

42

Future Work

• Dependent types

• Computational contracts

• More expressive security properties

43

Questions?

44

