Monitors and Blame
Assignment for Higher
Order Session Types

LIMIN JIA, HANNAH GOMMERSTADT,
FRANK PFENNING

Carnegie Mellon |
SCHOOL OF COMPUTER SCIENCE |

- 0000000000000 0000000000000




Distributed System




Distributed System




Contributions

* Use session types to dynamically monitor
communication between processes to
detect undesirable behavior

 Correctly blame the party that violated
the prescribed communication protocol



Static Checking?

* Need to run checker on each node on
code written in different languages

e Unrealistic to assume that will have access
to whole computing base

* Use session types as invariants to check
dynamically



Process Model

* Processes communicate asynchronously
over channels by using message queues

* A process provides a service along a single
channel, ex. proc(c, P)

proc(c, P)




Typing

C1:A1...c: A, - P :(c:A)
where A is a session type

A process always provides along a single channel, but
it may be a client of multiple channels.



Session Types

c:TANA Send v: T along ¢, continue as A
c.T—- A Receive v: T along ¢, continue as A
c:1 Close channel ¢ and terminate
c:AQ B Send channel d: A along ¢, continue as B
ccA B Receive channel d: A along ¢, continue B
c: D {l;: A;} Send label [; along c, continue as A4;
c:&{l;: A;} Receive label [; along c, continue as 4;



Session Types

c:TNA Send v: T along ¢, continue as A
c:t—o A Receive v: T along ¢, continue as A
c:1 Close channel ¢ and terminate
ccAQR B Send channel d: A along ¢, continue as B
c:A B Receive channel d: A4 along ¢, continue B
c: D {l;: A;} Send label [; along c, continue as A4;
c:&{l;: A;} Receive label [; along c, continue as 4;



Session Types

c:TNA Send v: T along ¢, continue as A
c:t—o A Receive v: T along ¢, continue as A
c:1 Close channel ¢ and terminate
c:AQ B Send channel d: A along ¢, continue as B
ccA B Receive channel d: A along ¢, continue B
c: D {l;:A;} Send label [; along c, continue as A4;
c: &{l;: A;} Receive label [; along ¢, continue as A;



Example

Cam = &{take: photoPerm —o picHandle @ Cam}

User = & {picRequest :
¢ {fail : User;

success : photoPerm ® User}}



System Assumptions

* All processes are untrusted

e All monitors are

* All message queues are




Attacker Model

* Takes control of a process by replacing it
by another

proc(c, P)




Attacker Model

* Takes control of a process by replacing it
by another

proc(c, P) - proc(c, Q)




Attacker Model

* Takes control of a process by replacing it
by another

havoc: proc(c, P) - proc(c, Q)




Attacker Model

* Takes control of a process by replacing it
by another

havoc: proc(c, P) - proc(c, Q)

e Q cannot invent new channels, must have
knowledge of existing ones



Monitor Capabilities
™

* Placed at the ends of each queue, check
message as it gets enqueued

e Can ONLY observe communicated values
 No access to process internals

e Raise alarms, which stop computation



Simple Monitor

proc(a, P)

ci:int \NA
— —

proc(c, Q)




Simple Monitor
proc(a, P) 4- €« . i ng proc(c, Q)
5

c:int NA
proc(a, P) 4- «— . proc(c, Q)

5:int




Simple Monitor
proc(a, P) 4- €« . i ng proc(c, Q)
5

c:int NA
proc(a, P) 4- - - proc(c, Q)

5:int

c:A
proc(a, P) —- <—5— . proc(c, Q)




Higher-Order Monitor

proc(a, P)

4- . ccA XB

proc(c, Q)




Higher-Order Monitor
proc(a, P) 4- < .C:A i proc(c, Q)

proc(a, P) 4- <€<—o— . i proc(c, Q)
- < . a4 proc(d, R)




Monitoring Challenges

e Havoc transitions can cause channels to be
duplicated, dropped, etc

* This can create non-linear dependencies




Blame Example

Monitor Record: Cam = &{take : photoPerm
- No spawns yet! —o picHandle @ Cam}




Blame Example

Monitor Record: 0 Cam = &{take : photoPerm
—o picHandle @ Cam}

- Cam spawned .v

picHandle
picHandle




Blame Example

Monitor Record: 0 Cam = &{take : photoPerm
—o picHandle ® Cam}

- Cam spawned .v
picHandle

picHandle

- picHandle .’
spawned

ohotoPer

photoPerm




Blame Example

Monitor Record: 0 Cam = &{take : photoPerm
—o picHandle ® Cam}

- Cam spawned .v
picHandle
picHandle
- picHandle .’
SpawnEd ohotoPer &

photoPerm




Blame Example

Monitor Record: 0 Cam = &{take : photoPerm
—o picHandle ® Cam}

- Cam spawned .v

picHandle
picHandle

- picHandle
spawned
photoPerm




Blame Example

Monitor Record: Cam = &{take : photoPerm

—o picHandle ® Cam}
- Cam spawned
picHandle

- picHandle
spawned
photoPerm




Blame Example

Monitor Record: am = &{take : photoPerm

—o picHandle @ Cam}
- Cam spawned
picHandle

- picHandle
spawned
photoPerm




Big Spawn Tree




Havoced Spawn Tree

Ak
(<
Aty

U

SoCTh,




Havoced Spawn Tree

O
<
&'e Q&

‘

U

FoCTh,

%




Blame Path




Theoretical Results

e Correctness of blame

 Well typed configurations do not raise
alarms

* Monitor transparency

* Minimality*



Correctness of Blame

* |In case of an alarm, one of the indicated
set of possible culprits must have been
compromised.

Definition 1 (Correctness of blame). A set of processes N is
correct to be blamed w.r.t. the execution trace T = (1, G —"
(), alarm(a) with = Q) : wf if there is a b € N such that b has

made a havoc transition in T.



Well Typed Configurations

A havoc transition is necessary for the
monitor to halt execution and assigh blame

Definition 2 (Well-typed configurations do not raise alarms).
Given any T = Q,G —* Q' G’ such that = Q : wf and T
does not contain any havoc transitions, there does not exists an a
such that alarm(a) € €V’



Monitor Transparency

 Dynamic monitoring does not change
system behavior for well-typed processes

Definition 3 (Monitor transparency). Given any | = (0, G —~
Q.G such that = Q : wf and T does not contain any havoc
transitions. Then Q(—~)*Q", where Q)" is obtained from €)' by
removing typing information from queues.



Minimality*

 The set of processes is as minimal as

possible with respect to the observational
model of the monitor

* This is a conjecture



Technical Challenges

* Execution may continue for havoced
processes for many steps before an
observable type violation occurs

 Rogue process configurations may violate
invariants such as linearity



Summary

e System of monitoring and blame
assignment for session-type asynchronous
communication model

* Adversary model allows process to
transition to ill typed code in a havoc step

Tech Report: https://www.cylab.cmu.edu/research/techreports/2015/tr_cylab15004.html



Related Work

 Blame Calculi: Findler et al. (2002), Wadler
et al. (2009), Dimoulas et al. (2011, 2012),
Ahmed et al. (2011), Fennel et al. (2012),
Keil et al. (2015), Siek et al. (2015)

 Multiparty Session Types: Bocchi et al.
(2013), Chen at al. (2011), Thiemann
(2014)



Future Work

 Dependent types

 Computational contracts

* More expressive security properties




Questions?




