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Contributions 
 

• Use session types to dynamically monitor 
communication between processes to 
detect undesirable behavior  

• Correctly blame the party that violated 
the prescribed communication protocol 
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Static Checking? 
 

• Need to run checker on each node on 
code written in different languages 

• Unrealistic to assume that will have access 
to whole computing base  

• Use session types as invariants to check 
dynamically 
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Process Model 
 

• Processes communicate asynchronously 
over channels by using message queues  

• A process provides a service along a single 
channel, ex. proc(c, P) 
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proc(c, P) 



Typing 
 

 

 

 

𝒄𝟏: 𝑨𝟏 … 𝒄𝒏: 𝑨𝒏 ⊢ 𝑷 ∷ (𝒄: 𝑨) 

where A is a session type 
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A process always provides along a single channel, but 
it may be a client of multiple channels.  



Session Types 

Type Meaning 

𝒄:  𝝉 ∧ 𝑨 Send 𝒗: 𝝉 along 𝒄, continue as 𝑨 

𝒄: 𝝉 → 𝑨 Receive 𝒗: 𝝉 along 𝒄, continue as 𝑨 

𝒄: 𝟏 Close channel 𝒄 and terminate 

𝒄: 𝑨 ⊗ 𝑩 Send channel 𝒅: 𝑨 along 𝒄, continue as 𝑩 

𝒄: 𝑨 ⊸ 𝑩 Receive channel 𝒅: 𝑨 along 𝒄, continue 𝑩 

𝒄: ⊕ 𝒍𝒊: 𝑨𝒊  Send label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊 

𝒄: & 𝒍𝒊: 𝑨𝒊  Receive label 𝒍𝒊 along 𝒄, continue as 𝑨𝒊 
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Example 
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System Assumptions 
 

• All processes are untrusted 

• All monitors are trusted 

• All message queues are trusted 
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Attacker Model 
 

• Takes control of a process by replacing it  
by another  

𝒑𝒓𝒐𝒄 𝒄, 𝑷  
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Attacker Model 
 

• Takes control of a process by replacing it  
by another  

havoc: 𝒑𝒓𝒐𝒄 𝒄, 𝑷  → 𝒑𝒓𝒐𝒄(𝒄, 𝑸)  
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Attacker Model 
 

• Takes control of a process by replacing it  
by another  

havoc: 𝒑𝒓𝒐𝒄 𝒄, 𝑷  → 𝒑𝒓𝒐𝒄(𝒄, 𝑸)  

• Q cannot invent new channels, must have 
knowledge of existing ones  
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Monitor Capabilities 
 

• Placed at the ends of each queue, check 
message as it gets enqueued 

• Can ONLY observe communicated values  

• No access to process internals 

• Raise alarms, which stop computation 
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Simple Monitor 
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proc(c, Q) proc(a, P) M M 
𝒄: 𝒊𝒏𝒕 ∧ 𝑨 
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proc(c, Q) proc(a, P) M M 

proc(c, Q) proc(a, P) M M 

𝒄: 𝒊𝒏𝒕 ∧ 𝑨 

𝒄: 𝒊𝒏𝒕 ∧ 𝑨 
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proc(c, Q) proc(a, P) M M 5 
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Higher-Order Monitor 
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proc(c, Q) proc(a, P) M M 
𝒄: 𝑨 ⊗ 𝑩 

d 



Higher-Order Monitor 
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proc(c, Q) proc(a, P) M M 

proc(c, Q) proc(a, P) M M d 

𝒄: 𝑨 ⊗ 𝑩 

𝒄: 𝑩 

M M proc(d, R) 
𝒅: 𝑨 



Monitoring Challenges 
• Havoc transitions can cause channels to be 

duplicated, dropped, etc 

• This can create non-linear dependencies 

. 
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Blame Example 
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Cam Monitor Record:  
- No spawns yet!  



Blame Example 
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Cam 

picHandle 

Monitor Record:  
 
- Cam spawned 
picHandle 



Blame Example 
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- picHandle 
spawned 
photoPerm 

photoPerm 
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Big Spawn Tree 
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Havoced Spawn Tree 
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Havoced Spawn Tree 
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Blame Path 
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Theoretical Results 
 

• Correctness of blame 

• Well typed configurations do not raise 
alarms 

• Monitor transparency 

• Minimality* 
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Correctness of Blame  

 

• In case of an alarm, one of the indicated 
set of possible culprits must have been 
compromised.  
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Well Typed Configurations 
 

• A havoc transition is necessary for the 
monitor to halt execution and assign blame 
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Monitor Transparency 
 

• Dynamic monitoring does not change 
system behavior for well-typed processes 
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Minimality* 
 

• The set of processes is as minimal as 
possible with respect to the observational 
model of the monitor 

• This is a conjecture 
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Technical Challenges 
 

• Execution may continue for havoced 
processes for many steps before an 
observable type violation occurs 

• Rogue process configurations may violate 
invariants such as linearity  
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Summary 
 

• System of monitoring and blame 
assignment for session-type asynchronous 
communication model 

• Adversary model allows process to 
transition to ill typed code in a havoc step 
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Tech Report: https://www.cylab.cmu.edu/research/techreports/2015/tr_cylab15004.html 
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Future Work 
 

• Dependent types  

• Computational contracts 

• More expressive security properties 
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Questions? 
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