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Contributions

* Use session types to dynamically monitor
communication between processes to
detect undesirable behavior

 Correctly blame the party that violated
the prescribed communication protocol



Static Checking?

* Need to run checker on each node on
code written in different languages

e Unrealistic to assume that will have access
to whole computing base

* Use session types as invariants to check
dynamically



Process Model

* Processes communicate asynchronously
over channels by using message queues

* A process provides a service along a single
channel, ex. proc(c, P)

proc(c, P)




Typing

C1:A1...c: A, - P :(c:A)
where A is a session type

A process always provides along a single channel, but
it may be a client of multiple channels.



Session Types

c:TANA Send v: T along ¢, continue as A
c.T—- A Receive v: T along ¢, continue as A
c:1 Close channel ¢ and terminate
c:AQ B Send channel d: A along ¢, continue as B
ccA B Receive channel d: A along ¢, continue B
c: D {l;: A;} Send label [; along c, continue as A4;
c:&{l;: A;} Receive label [; along c, continue as 4;
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Session Types

c:TNA Send v: T along ¢, continue as A
c:t—o A Receive v: T along ¢, continue as A
c:1 Close channel ¢ and terminate
c:AQ B Send channel d: A along ¢, continue as B
ccA B Receive channel d: A along ¢, continue B
c: D {l;:A;} Send label [; along c, continue as A4;
c: &{l;: A;} Receive label [; along ¢, continue as A;



Example

Cam = &{take: photoPerm —o picHandle @ Cam}

User = & {picRequest :
¢ {fail : User;

success : photoPerm ® User}}



System Assumptions

* All processes are untrusted

e All monitors are

* All message queues are




Attacker Model

* Takes control of a process by replacing it
by another

proc(c, P)
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Attacker Model

* Takes control of a process by replacing it
by another

havoc: proc(c, P) - proc(c, Q)

e Q cannot invent new channels, must have
knowledge of existing ones



Monitor Capabilities
™

* Placed at the ends of each queue, check
message as it gets enqueued

e Can ONLY observe communicated values
 No access to process internals

e Raise alarms, which stop computation



Simple Monitor

proc(a, P)

ci:int \NA
— —

proc(c, Q)




Simple Monitor
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5:int




Simple Monitor
proc(a, P) 4- €« . i ng proc(c, Q)
5

c:int NA
proc(a, P) 4- - - proc(c, Q)

5:int

c:A
proc(a, P) —- <—5— . proc(c, Q)




Higher-Order Monitor

proc(a, P)

4- . ccA XB

proc(c, Q)




Higher-Order Monitor
proc(a, P) 4- < .C:A i proc(c, Q)

proc(a, P) 4- <€<—o— . i proc(c, Q)
- < . a4 proc(d, R)




Monitoring Challenges

e Havoc transitions can cause channels to be
duplicated, dropped, etc

* This can create non-linear dependencies




Blame Example

Monitor Record: Cam = &{take : photoPerm
- No spawns yet! —o picHandle @ Cam}
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picHandle
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Blame Example

Monitor Record: Cam = &{take : photoPerm

—o picHandle ® Cam}
- Cam spawned
picHandle

- picHandle
spawned
photoPerm




Blame Example

Monitor Record: am = &{take : photoPerm

—o picHandle @ Cam}
- Cam spawned
picHandle

- picHandle
spawned
photoPerm




Big Spawn Tree




Havoced Spawn Tree
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Blame Path




Theoretical Results

e Correctness of blame

 Well typed configurations do not raise
alarms

* Monitor transparency

* Minimality*



Correctness of Blame

* |In case of an alarm, one of the indicated
set of possible culprits must have been
compromised.

Definition 1 (Correctness of blame). A set of processes N is
correct to be blamed w.r.t. the execution trace T = (1, G —"
(), alarm(a) with = Q) : wf if there is a b € N such that b has

made a havoc transition in T.



Well Typed Configurations

A havoc transition is necessary for the
monitor to halt execution and assigh blame

Definition 2 (Well-typed configurations do not raise alarms).
Given any T = Q,G —* Q' G’ such that = Q : wf and T
does not contain any havoc transitions, there does not exists an a
such that alarm(a) € €V’



Monitor Transparency

 Dynamic monitoring does not change
system behavior for well-typed processes

Definition 3 (Monitor transparency). Given any | = (0, G —~
Q.G such that = Q : wf and T does not contain any havoc
transitions. Then Q(—~)*Q", where Q)" is obtained from €)' by
removing typing information from queues.



Minimality*

 The set of processes is as minimal as

possible with respect to the observational
model of the monitor

* This is a conjecture



Technical Challenges

* Execution may continue for havoced
processes for many steps before an
observable type violation occurs

 Rogue process configurations may violate
invariants such as linearity



Summary

e System of monitoring and blame
assignment for session-type asynchronous
communication model

* Adversary model allows process to
transition to ill typed code in a havoc step

Tech Report: https://www.cylab.cmu.edu/research/techreports/2015/tr_cylab15004.html
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Future Work

 Dependent types

 Computational contracts

* More expressive security properties




Questions?




